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TECHNICAL REPORT R-156 

RADIANT HEAT TRANSFER TO ABSORBING GASES ENCLOSED IN A CIRCULAR 
PIPE WITH CONDUCTION, GAS FLOW, AND INTERNAL 

HEAT GENERATION 
By THOMAS H. EINSTEIN 

SUMMARY 

A twodimensionul analysis i s  presented for deter- 
mining the heat transfer to a gray uniformly ab- 
sorbing gas enclosed i n  a black circulur pipe under 
the combined influence of radiation, gasJEow through 
the pipe, and thermal conduction in the gas. 1% 
analysis also takes into account the presence of 
distributed energy sources in the gas. 

Speci@ results are obtained for  a pipe with a 
length to diameter ratio of 5 and for  a range of gas 
opacity f rom 1.0 to 10.0. The ends of the pipe 
consist of porous black plugs that simulate the 
radiation entTironment external to the pipe but 
permit $ow through the pipe. All the results are 
presented in dimensionless parameters f o r  generality. 

It was found that when a n  absorbing gasJEowing 
through a pipe is heated only by radiation emitted 
f r o m  isothermal walls of the pipe, the heat trans- 
mitted to the gas goes through a maximum as the 
opacity of the gay is increased. 

Results are also presented f o r  heat transfer to a 
f lowing gas and the pipe m& by radiation emitted 
f r o m  a heat-generating gaseous core in the center of 
the pipe. For these spec& results, the radius of 
the heat-generating cylindrical gaseous core is 0.2 
of the pipe radius. It is shorn that the percentuge 
of heat generated that is radiated to the walc can be 
made negligibly small $both the gas opaeity and the 
gas $ow rate in the annulus surrounding the core 
are made su&kntly high. 

F i d y ,  results are presented f o r  one-dimensional 
radial radiad heat transfer f r o m  a heat-generating 
gaseous core through a stationary absorbing gas to 
the Waus of the pipe. These resdts are compared 
with a soluiion f o r  the emissiue power distribution 
an the gas obtained by using the Rosseland diffusion 

approximiion with a j u m p  boundary condition, 
and good agreement between the two methods is 
obtained. 

INTRODUCTION 

Recently, there has been a significant increase 
of interest in heat-transfer yl-oblems associated 
with thermal-radiation-absorbing gases. Nearly 
all gases, when in the dissociated or ionized state, 
absorb radiation to some extent. Many gases, 
such as water vapor and carbon dioxide, are even 
fair absorbers in their normal molecular states 
at moderate temperatures. Even gases that, do 
not absorb radiation can be made into effective 
absorbers if they are seeded with microscopic 
dust particles or powders such as carbon black. 
The recent surge of interest in this area is related 
to the current importance of high-temperature 
problems associated with space-vehicle reentry, 
heat transfer from electric arcs and other high- 
temperature plasmas, and energy transport in 
in gaseous nuclear reactors. 

Reference 1 deals with the interaction be- 
tween radiation and thermal conduction and with 
radiant heat transfer from constant-temperature 
surfaces to flowing radiation-absorbing gases. 
Two-dimensional results were obtained for the 
case of a finite length channel formed between 
two semi-infinite parallel flat plates. That geom- 
etry was chosen in order to simplify the analysis 
and presentation of results in that report as much 
as possible. Although many interesting and 
important generalized results were obtained with 
regard to the effects of flow on radiant transfer 
to an absorbing gas and the interaction between 
radiation and conduction, the semi-infinite par- 
allel-plate geometry of that report made interest 
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in'the specific results obtained therein somewhat 
academic. 

I t  is the purpose of this report to apply the 
method of analysis used in reference 1 to a georn- 
etry of more practical interest, a circular pipe 
of finite length, and to present results for radiant 
heat trtinsfer to absorbing gases enclosed in such 
a pipe. Typicd problems to which this analysis 
might be applied are radiant heating of an absorb- 
ing gas flowing through a heated pipe, the heating 
of the walls of a pipe by an enclosed plasma jet 
or electric arc, or heat transfer in a coaxial-flow 
gaseous reactor. 

Previous work in the analysis of radiant heat 
transfer to absorbing gases in a cylindrical pipe 
is described in references 2 and 3. The analysis 
of referencc 2 is for a gray gas of uniform absorptiv- 
ity flowing in a black cylindrical pipe. Some 
of the :issumptions used in the analysis, however, 
render the results valid only when reciiiission of 
radiation by the gas inay be neglected. Ref- 
erence 8 applies the method of analysis of rcf- 
erence 4 to the heating of an absorbing medium 
in a cylindrical pipe and treats the case of a 
nongray gas enclosed in a pipe that has a partly 
reflecting (gray) surface. The analysis, however, 
does not allow for radial temperature gradients 
in the medium. Also, although the method of 
analysis is presented, no results are given. 

The two-diniensional andysis for a cylindrical 
pipe presented in this report follows along the 
same lines as that given in reference 1. For the 
sake of simplicity, the present analysis assumes 
tha t conditions in the pipe arc axisymrnetric, and 
it is limited to a gray gas of uniform absorptiv- 
i ty enclosed in a cylinder whose interior surfaces 
are black. The analysis, however, could be 
extended to cover nongray gases by applying 
the method of reference 4, in which a nongray 
gas is approximated by a mixture of gray gases. 

Results are presented herein for (1) heating a 
flowing gas by radiation from a constant tempera- 
ture pipe wall, and (2 )  for heating the gas and the 
interior surface of the pipe by radiation from 
energy sources distributed uniformly in a cylin- 
drical inner concentric core of the gas, the diam- 
eter of which is 0.2 that of the pipe. All results 

are presented in terms of dimensionless parame- 
ters to obtain maximum generality. 

ANALYSIS 

A two-dimensional analysis of radiant heat 
transfer is presented for a gray gas of uniform 
absorptivity enclosed in a cylindrical pipe of 
finite length as shown in figure 1. The interior 
surface of the pipe is black, and conditions at the 

Gas f l o w  

-Porous e n d  sur face  

F i C U R E  1.-Cylindrical pipe containing 
radiation-absorbing gas. 

crids of the pipe are represented by porous black 
surfaces. These pseudo end surfaces are assumed 
to be black in order to simulate the radiant prop- 
erties of the environment exterior to the pipe in 
calculating the radiant interchange between this 
environment and the gas and surfaces in the in- 
terior of the pipe; they are assumed porous to 
dlow for the flow of gas through thc ends of the 
pipe. The analysis takes into account not only 
the radiant interchange in the pipe but also the 
simultaneous effects of gas flow and thermal 
conduction. 

For the purpose of simplicity, however, as is 
often done in convection heat-transfer problems, 
the axial component of conduction is neglected, 
which leaves only the radial component to be 
considered. Allowance is also made for distributed 
energy sources in the gas. The conditions in the 
pipe are also assumed to be axisymmetric. A 
rigorous treatment of this problem requires the 
solution of the following two-dimensional integro- 
differentia1 equation, which represents the heat 
balance on an infinitesimal volume of gas dV. 
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located at position 7, in the interior of the pipe: 

where 

P”’(P0) 
-3 -+ 

heat generation in the gas per unit volume a t  r,, 
+ 

4kaT4(r,) 
- + +  

radiant energy emitted per unit volume a t  r = r o  

pate of enthalpy increase of the flowing gas a t  r = r ,  
+ - +  

+ +  
net conduction heat transfer per unit volume at r = r ,  

P dP 
+ 

kJJ,fsT“)j(:-:,)dr radiation absorbed per unit volume a t  r ,  froni emission given off by the rest 

kJJuT:(?)g(f-;,)dA 

of the gns in the cylinder 

+ 
radiation absorbed per unit volume at T ,  from emission of pipe wall and end 

surfaces 

(A11 sj-mbols are defined in appendix A.) 
Unfortunately, even in the case where thermal 

conduction and flow are absent, equation (1) is 
not easily solved for a cylindrical geometq-, though 
solutions ha\-e been obtained for R spherical 
geometry (ref. 5 )  and infinite parallel flat plates 
(ref. 6). Consequently, the only feasible waj- of 
obtaining a solution to equation (1) for R cj-lin- 
driciil geoinetq-, even in the absence of conduc- 
tion or flow, is by resorting to ai scheiiie such as 
that described in reference 1, in which the interior 
of the cylinder is divided into a finite number of 
zones, and the tit-0-diniensional integrodifferential 
equation is approximated by a system of algebraic 
equations. Thus, in the present situation, the 
interior of the cylinder is broken up into 50 gas- 
ring zones of rectangular cross section, 10 zones 
axially and 5 zones radiallj-, as shown in figure 2. 
The cross sections of all these gas zones are iden- 
tical, and the zones themselves are toroidal rings 
of rectangular cross section except for the inner- 
most zones, which are solid cylinders whose radii 
are equal to 0.2 of the radius of the pipe. Figure 
2 is a cutaway view of the pipe that shows the 
division of the interior into the zones, as described 
previouslv, and the shape of each zone. The 
cylindrical and end surfaces of the pipe are sin& 

FIGCRE %--Interior of pipe illustrating division of gas into 
toroidal zones of rectangular cross section. 

lady divided into surface zones Khose boundaries 
correspond with those of the adjoining gas zones 
described previously. Thus, the cylindrical sur- 
face is divided into ten equal size surface zones of 
c_vlindrical shape, of which the length of each is 0.1 
that of the whole pipe. Similarly, each of the 
end surfaces is divided into five radial surface 
zones of annular shape, the width of which is 0.2 
of the pipe radius. Again, the innermost surface 
zone on the end degenerates into a circle whose 
radius is 0.2 of the pipe radius. 
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APPLICATION OF HEAT-BALANCE EQUATIONS 
AT ZONE CENTERS 

Given the preceding division of the gas in the 
pipe into 50 zones, the solution to equation (1) 
may be approximated by writing heat-balance 
equations on infinitesimal volumes located a t  the 
centers of the cross sections of each of the 50 gas 
zones. The circumferential position in the zones of 
these infinitesimal volumes is immaterial, since 
conditions in the pipe are assumed to be axisym- 
metric. The problem now to be solved is to 
determine the temperature distribution in the gas 
and the heat flux to the surfaces for a given surface 
temperature distribution and for given distribu- 
tion of energy sources in the gas. The surface 
temperatures are specified for each of the surface 
zones on the cylindrical wall and both ends. The 
temperature of each surface zone is assumed to be 
uniform over that zone but may vary from one 
surface zone to the next. Thus, the temperature 
distribution on a surface is approximated by a 
stepwise temperature distribution over the zones 
comprising that surface. The heat-generation rate 
per unit volume is specified for each of the gas 
zones (this quantity will in many cases be zero for 
some or all of the zones). Again, this power 
density is assumed to be uniform over any given 
zone so that the total power produced by the 
sources in that gas zone is obtained by multiplying 
the power density by the zone volume. Thus, the 
distribution of energy sources in the gas is approxi- 
mated by the stepwise variation of power genera- 
tion over the gas zones. 

Again, the problem to be solved is: Given a 
temperature distribution on the surface bounda- 
ries of the pipe and a distribution of internal 
energy sources in the gas, find the resulting tem- 
perature distribution in the gas and the heat 
transfer between the gas and the surfaces. As 
mentioned before, an approximation to the so- 
lution of the problem is obtained by applying 
equation (1) to the heat balances on the infinitesi- 
mal volume elements a t  the centers of the cross 
sections of each of the gas zones. In  order to 
replace the integrodifferential equation with 
algebraic equations, it becomes necessary to 
approximate the derivatives in equation (1) with 
algebraic difference quotients in terms of the gas- 
zone-center temperatures and the integrals in 
terms of finite sums that are algebraic functions 
of the gas-zone-center temperatures. Since there 

are 50 gas zones, there are 50 separate heat- 
balance equations and also 50 unknowns, namely, 
the temperatures at the centers of the cross sec- 
tions of the gas zones. The algebraic-difierence- 
quotient approximations for the derivatives are 
obvious. The presentation of the integrals in 
terms of the unknown gas-zone-center temper- 
atures is more involved and is the subject of the 
following paragraphs. I n  any case, since the 
regions of integration are divided into zones, the 
integrals over the pipe in equation (I) may be 
exactly represented by obtaining the integrals for 
each zone and then summing these zone integrals 
over all the zones in the pipe. 

Each of the 50 zones is labeled by a dual sub- 
script (i,j), where i is the position along the 
length of the pipe and j represents the radial 
position from the center of the pipe to the wall. 
Figure 3 gives the cross section of the pipe along 
the centerline showing the gas zone cross sections 
and describing the manner of labeling given 
previously. Consequently, t,he heat-balance equa- 
tion on an infinitesimal volume element a t  the 
center of the (i, j )  th zone may be written as follows : 

for i=1-10; j=1-5 (2) 

Obviously, the form of the derivative approx- 
imations, which appear in equation (2), needs to 
be modified along the surface boundary of the 
pipe for i=1, 10 or j = 5 .  Here, R i j  represents 
the position vector a t  the center of the cross 
section of the (i, j)th gas zone, rm. is the position 
vector of a point in the (m, n)th gas zone, and 
r ,  and r ,  the position vectors of points on the 
mth wall-surface zone or nth end-surface zone, 
respectively. The subscript I in the last sum- 
mation denotes the two end surfaces of the pipe. 
As mentioned earlier, t,he surf ace temperatures 

+ 

+ 

+ + 
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FIGCRE 3.--Cross section of circular pipe illustrating clivi- 
sion into 50 toroidal ring gas zones, 10 wall-surface 
zones, and 5 end-surface zones on each end. 

on the pipe, which are given, are assumed to be 
constant over each of the surface zones; therefore, 
they may be taken outside the integral sign in 
the integral over each zone, as illustrated in the 
last two terms of equation (2). The temperatures 
in the gas zones, however, are not assumed to be 
uniform over each zone, as will be discussed 
shortly and, thus, for the time being dl remain 
inside the integral sign. 
is the exchange factor between a ring of gas of 
infinitesimal cross section and volume dv through 
position rm,n in the cross section of the (m, n)" 
gas zone and the infinitesimal rolume located a t  
position R , ,  at the center of the cross section of 
the (i, j)th gas zone, on which the energy balance 
is being taken. Similarly, the factor gW(rm-Ri ,) 
is the exchange factor between a surface ring of 
infinitesimal width and area dA on the cylindrical 
wall a t  position r ,  on the wall-surface zone and 

the infinitesimal gas volume a t  position R,,,. 
Finally, ge(rn--Rrj) is the exchange factor be- 
tween an annular surface ring of infinitesimal 
width and area dA a t  position r, on the nth 
end-surf ace zone and the infinitesimal gas volume 
a t  position R, A thorough derivation and a 
description of these three exchange factors are 
giren in appendix B. 

-i -i 

The factor f (rm,  ,,-R,, 

+ 

-i 

+ +  

--f 

-+ 

+ +  

-i 

-i 

686-i91-63-2 

ALLOWANCE FOB VARIATION OF TEMPERATURE IN GAS 
ZONES 

As mentioned earlier, the temperatures in a gas 
zone are not assumed to be uniform over the zone. 
In  realitj-, of course, the variation of gas tempera- 
ture in the pipe will be continuous in each zone 
and from one zone to another. Thus, it is desirable 
to find a relation, in terms of the unknown zone- 
center temperatures, that dl approximate the 
actual variation of gas temperature in the zones. 
The simplest approximation is to assume that the 
variation of emissive power in each zone is a 
two-dimensional linear function. Let the rec- 
tangular cross section of each zone be described 
by a rectangular coordinate system (&7) whose 
origin is a t  the center of the zone cross section. 
Since the length of the cross section is LjlO and 
the m-idth is R/5, the cross section is described 
by - (L/20) 5 65 (L/2O) and - (R/lO) 5 75 (B/10). 
The coord ina te  s j -s tem (6.7) i n  t h e  (m,n)" 
zone is oriented so that tlie pusitii-e d h c t i o ~ i  is 
tom-ard Ri, jl the point in the (ilj)m zone that is 
being irradiated by the (m,n)th zone. The two- 
dimensional variation of emissive power in the 
cross section of the (m, n)" zone may then be given 

+ 

b- 
W 6 i  ? > = T ~ , , + ( T ~ * , , - - ~ , n )  t 

where to and qo are the length and width of the 
zone cross sections, respectkelj-, and Tm,,, 
and Tm,nal are the temperatures at  the centers of 
zones adjacent to the ( m , ? ~ . ) ~ ~  zone. The two- 
dimensional function given by equation ( 3 )  
completely defines the temperature field through- 
out each of the toroidal gas zones, since the 
temperatures vary only in the cross sections of 
the zones and are otherwise circumferentially 
uniform because of the axisymmetry of the 
problem. Equation (3)  is substituted for the 
emissive power T4 in that integral of equation ( 2 )  
which represents the radiation interchange between 
the surrounding gas zones and the center of the 
(i, j)th zone and is given as 
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Thus, this exchange integrd may be expressed 
in teriiis of tlie unknown temperatures at the 
centers of the ( v ~ , n > ~ ~  zone and two adjacent 
zones, tmd these temperatures niay then be taken 
outside the integral sign. The details of eval- 
uating the integral (eq. (4)) in terms of the 
unknown zone-center temperatures are given in 
appendix C. 

EVALUATION OF EXCHANGE INTEGRALS 

The labor of evaluating the gas-zone to gas 
exchange integrals (eq. (4)) and the other surface- 
zone to gns exchurige integrals that appear in 
equation (2) is considerable, since these integrals 
are functions of the relative positions of the zones 
in question and the integrations have to be per- 
formed for each unique zone pair. Since the 
gas-zone to gas exchange integrals (eq. (4)) cirn 
be evaluated in ternis of the zone-center tenipera- 
tures, these teriiperatures may be taken outside 
the integral sign and the actual process of integrii- 
tioii then beconies independent of tetiiperwture, 
as in the case of the surface-zone to gas integrals 
described enrlier. In appendix B, it is shown thiit 

the form of the exchange factors f(s) is such that 
the volume integrals over the gas zones are trans- 
formed to surface integrals over the zone cross 
sections and tlie resulting integrations to be 
performed, which are described in appendix C, 
are of the form 

-3 

-+ 
JJF[;& 7 ) - R z , J b  dt (Sa) 

JJt&>dt, d--Rz.,ld?ldE (5b) 
-3 

* -3 

where F(s)=2a~f(s)  and p is the radius of the 
infinitesimal gas ring in the (m,n)th zone (see 
appendix C). Though a unique value of these 
integrals is associated with every zone pair (m,n) 
and (i, j ) ,  and there are n2=2500 different gas- 
zone-pair combinations among the 50 zones, it 
is not necessary to compute 2500 separate integrals. 
This is true because use can be made of the syni- 
metry created by the identical shape of the zones 
along the length of the pipe. The integrals in 
equations (5a) and (5b) are functions only of the 
respective radii of the ( w L , ~ ) ~ ”  and (i,j)t” zones 
and their relative axial positions, or axial separa- 
tions, since the size of the zones does not vary with 
axiiil position. 

Thus, there are only 5 ~ 5 ) < 1 0 = 2 5 0  unique gas- 
zone pairs and, consequently, the preceding inte- 
grations need only be performed 250 times instead 
of 2500. These integrals may then be evaluated 
by placing the (i,j)t” gas zone a t  one end of the 
pipe in each of the five different radial positions 
and letting the ( w L , ~ ) ~ ~  gas zone range over all 
50 zone positions in the pipe. In  this way, all 
250 (5x50)  gas-zone to gas exchange integrals 
can be determined. The problem of the surf we- 
zone to gas exchange integrals is handled in a 
similar manner. For the cylindrical wall-surf ace 
zones, there are a total of 500 different zone-pair 
combinations with the gas zones. Again, because 
the zones are of equal size along the length of the 
pipe, only 50 of these combinations are unique. 
The exchange integrals that corresporid to these 
50 unique combinations niny then be evaluated by 
taking the wall-surface zone at one end of tlie pipe 
and letting the (i,j)th zone riirige over all 50 gas 
zones in the pipe. For the end-surface zone to 
gas exchange integrds, there are 250 possible 
zone-pair conibinations all of which are unique. 
Since there are five radial end-surf ace zones and 
50 gas zones (5X50=250) no reduction in the 
niiinber of exchange integrals is possible here. 

The labor of evtiluating these exchange in tegrds 
may be reduced considerably by making use of the 
following consideration. It is shown in appendix 
D of reference 1 that when the optical distance 

between two points in the gas is such that T = k  Is/ 
>7,  the error made in neglecting the radiant ex- 
change between those points is less than 0.1 per- 

cent. Because of this, the exchange factors f(s) 

and g(s) may be set equal to zero for all ~ > 7 ,  and 
the evnluntiori of the exchange integritls a t  these 
distances is eliminated. 

+ 

+ 

* 

SOLUTION OF HEAT-BALANCE EQUATIONS 

The evaluation of all the gas exchange integrals 
that appear in equation (2) having thus been 
described, the surface to gas exchange integrals 
become coefficients of the known surface emissive 
powers and the giis to gas exchange integrals be- 
come coefficients of the unknown gas-zone-center 
einissive powers in that equation. In  this nitin- 
ner, till the coefficients of the gas-zone emissive 
powers in each of the 50 zone-center heat-balance 
equations of the form of equtitiori (2) are deter- 
mined. ‘The finite sums over the gas zones in 
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equation (2 )  are therefore composed of linear com- 
binations of these unknorm eniissive powers. 
Since the surface temperatures and heat sources 
are given parameters, the onlv unknowns left in 
this sp ten i  of 50 equations are the 50 values of 
emissive power or temperature a t  the zone centers. 
In  the absence of either flow or conduction, equa- 
tion (2 )  will form a set of algebraic equations linear 
in the unknowns UT:, and may be solved direct13- 
by standard matrix methods for such problems. 
When either flow or conduction is present in the 
problem, however, the equations become nonlinear 
in UT: as a result of the appearance of terms in 
temperature T ,  I ,  which arise from the derivative 
terms in equation (1 j .  Consequentl>-, the system 
of equations must then be solved by an iterative 
method for nonlinear algebraic equations such as 
the sew ton-Raphson met hod. 

I t  should be mentioned that the accuracy of the 
solution of these equations deteriorates rather 
rapidl5- when the zones theniselves become op- 
tically dense, for instance, when the opacity of the 
zones in the direction of maximum heat transfer 
(radially) becomes greater than one mean free 
path ( T = l j .  As the opacity increases, the solu- 
tion of equation (2 )  is more susceptible tQ error 
because of the following two considerations : First, 
a t  high values of zone opacity, the assumption of 
linear variation of emissive power in the cross 
section of a zone is no longer necessaril>* an accu- 
rate representation of the actual situation, par- 
ticularlj- in gas zones adjacent to a surface bound- 
ary. Second, as the zones become increasingly 
opaque, equation ( 2 )  tends to become indeter- 
minate. This situation occurs when a zone be- 
conies so opaque that an infhiitesinial volume at 
the center of the zone effectively receives radiation 
only from the zone in which it is located and al- 
most none froin an?- of the surrounding zones. 
This has the following effect on the coefficients of 
the heat-balance equation (eq. (2 )  ) for that par- 
ticular zone. The exchange integrals from the 
other zones tend to vanish as the zones become 
opaque, and, consequently, so do the coefficients 
of the eniissire powers of the other zones in the 
given equation. The exchange integral from the 
gken  zone to its center beconies larger. rapidly 
approaching the limiting value of 4, and thus 
cancelling out the emission coefficient at the zone 
center. Consequently, the coefficient of the emis- 
sive power of the given zone also tends to vanish. 

Therefore, since all the coefficients representing 
radiative exchange in equation ( 2 )  become van- 
ishinglj- snia11, the effects of sinall errors made in 
numerical computation of the exchange integrals 
become magnified, and the systeni of equations 
also tends toward indeterminac-. Because of the 
previous considerations, use of the method of this 
report should be limited to cases in which the 
optical distance across the zone in the radial direc- 
tion does not exceed one mean free path. 

The application of the ?\’en.ton-Raphson method 
to the solution of a system of nonlinear equations 
similar to the one just discussed is given in detail 
in appendix E of reference 1. The results of the 
solution of the s-stem of equations (eq. (2)) are 
the 50 values of emissive power or temperature 
a t  the centers of the cross sections of the 50 gas 
zones. Since the temperature distribution of 
the giis in the pipe is continuous, the temperatures 
a t  the 50 gas-zone centers approsiniatelj- determine 
the gas temperature distribution in the pipe. 
Although the temperature distribution in the 
pipe has thus been determined, the problem is 
not yet completely solved, since the heat ex- 
change between the surfaces and the gas still 
remains to be found. 

DETERMINATION OF HEAT TRANSFER TO SURFACE OF PIPE 

The heat transfer to the surfaces of the pipe 
can be divided into two parts: (1) the direct 
radiant heat transfer between the surfaces them- 
selves, and ( 2 )  the heat eschange betm-een the 
surfaces and the gas. The transfer between the 
surfaces and the gas is also divided between 
that due to radiation and that due tQ conduction 
between the surface and the adjacent gas. The 
direct eschange between the surfaces is described 
by three different classes of exchange integrals. 
The first category is the eschange between two 
surface zones on the interior of the cylindrical 

: 
+ +  

Urn+ t = JAm ~ z h , , ( r m - r * ) d i l m d A ,  ( 6 4  

Equation (Ga) represents the radiation emitted 
from the mth wall-surface zone that is absorbed 
a t  the it” mall-surface zone. The exchmge 

factor htrtc(r,-r,) represents the radiant ex- 
change between a wall-surface ring of infinitesimal 

width and area dA, in position r ,  on the mth 

+ 3  

+ 
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wall-surface zone and a siniilar surface ring a t  

position ri  in the ith zone of area dA,. 
The second category of direct surface exchange 

is between two end-surface zones on opposite 
ends of the pipe. The following relation gives 
the emission from the nth annular surface zone 
a t  one end to thej th  annular surface zone at  the 
opposite end : 

+ 

+ +  
The exchange factor hee(rn-rf) represents the 
radiant exchange between an annular ring of 

infinitesimal width and area dA, a t  position r ,  
in the nth end-surface zone and a similar annular 

+ 

ring of area dA, a t  position r f  in the jth end- 
surface zone on the opposite end of the pipe. 
The final form of direct surface interchange is 
between an end-surface zone and a cylindrical 
wall zone. The following relation gives the 
emission from the mth cylindrical surface zone on 
the wall to the jt” annular surface zone on an end : 

+ +  
q m + j  = g %, JAm JAFwe(rm-rJ)dAm d ~ i  (6c) 

+ +  
The exchange factor h,,(T,-rJ represents the 
radiant exchange between a wall-surface ring of 

infinitesimal width and area d4, a t  position rl)& 
in the mth wall-surface zone tind an annular 
surface ring of infinitesimal width and area dA, 

a t  position r ,  in the jth end-surface zone. The 
derivation of the direct surface exchange factors 
h,,, he,, and h,, is given in appendix B. 

The evaluation of the radiation exchange be- 
tween the gas and the surface is somewhat more 
involved. The discussion of the exchange be- 
tween the gas and a wall-surface zone is similar 
to that between a gas zone and an end-surface 
zone; thus, for the sake of brevity, only the 
exchange between a gas zone and an end-surface 
zone is discussed. 

At first, i t  would seem that the exchange be- 
tween the gas and the surface could be given 
directly by the surface to gas exchange integrals 
that appear in equation (2). It should be 
emphasized, however, that those integrals are 

+ 

+ 

not for the exchange between an entire gas zone 
and a surface zone, but rather represent only the 
exchange between a surface zone and an in- 
finitesimal volume located a t  the center of the 
cross section of a gas zone. Thus, the exact 
formulation for the exchange between the (i, j)th 
gas zone and the mth wall-surface zone is given as 

The integral represents exactly the radiation 
emitted from the entire (i, j)th gas zone that, is 
transferred to the mth surface zone. 

Because of the high multiplicity of integration 
in equation (7a), the evaluation, as i t  stands, is 
prohibitively laborious. Consequently, to reduce 
this task to reasonable proportions, it is necessary 
to make another simplifying assumption. The 
assuinption made is that the exchange integral 
from the gas zone to the surface zone can be 
approximated by the exchange integral from the 
gas zone to a point a t  the center of the surface 
zone; thus, the integration over A, in the previous 
expression is eliminated. Therefore, the approsi- 
inate expression for the emission from the (i, j)th 
gas zone to the mth wall-surface zone beconies 

where R, is the position vector of the center of 
the mth surface zone. 

This approximation is quite good when the 
subject gas and surface zones are far apart; i t  is a t  
its worst, though still acceptable, when the zones 
are adjacent if the dimensions of the gas zones 
are small in comparison with those of the pipe, 
as in the present case. The emissive-power 
distribution in the gas zone that appears in 
equation (7b) is again the linear approximation 
given by equation (3). It is shown in appendix B 

that, as for the case of f(s), the form of g(s) is such 
that the volume integral in equation (7b) reduces 
to a surface integral over the zone cross section. 
The details of the integration of equation (7b) are 
similar to those given in appendix C except that 
the emission is now to an infinitesimal surface ring 
a t  the center of the wall-surface zone instead of an 
infinitesimal volume a t  the center of the gas-zone 

-3 -3 
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cross section, with an appropriate change in ex- 
change factors from .f(s) to g,(s). Again, on the 
substitution of equation (3) for T4((f ,  q), equation 
(7b) is expressed in terms of the gas-zone-center 
temperatures, and the actual integration of the 
exchange factors becomes independent of tem- 
perature. In  the same manner as discussed 
earlier for the case of the surface-zone to gas 
exchange integrals, it is necessary- to compute only 
50 unique values of the gas-zone to wall-surface 
exchange integrals arising from equation (7b). 
But for the gas-zone to end-surface exchange 
integrals, it is again necessary to compute values 
for all 250 different combinations. 

The evaluation of radiant exchange to a surface 
zone from the gas zones and the other surface 
zones having been discussed, it is now possible to 
determine the net amount of heat transferred by 
radiation a t  each surface zone. As before, the 
procedure is similar for both q-lifidrical a n n -  
surface zones and for end-surface zones, but  for 
the sake of brevity only the procedure for cylindri- 
cal wall-surface zones will be discussed; the 
situation for the ends should then be self-evident. 
The equation that gives the net amount of heat 
transferred by radiation on the i” wall-surface 
zone is 

+ + 

The first term in equation (8) represents the 
heat radiated to the i* wall zones from all the 
other cylindrical wall zones, including the i” zone. 
The second term represents the radiation trans- 
mitted from both ends of the cylinder to the i* 
wall zone. The third term gives the radiation 
from all the gas zones that is received a t  the im 
surface zone. Finally, the last term represents 
the radiation emitted by the ith wall-surface zone. 
If pl, as given by equation (8), is positive, energy 
is being removed externally from the i” surface 
zone, whereas if qt is negative, energy must be 
supplied externally to the zone. 

In the case of the ends of the cylinder, since the 
end surfaces are not really surfaces a t  all but are 
used merelj- as simple models of the radiation 
environment external to the ends of the cylinder, 
the heat-exchange equation for the end surfaces, 
which corresponds to equation (S), gives the net 
radiation heat transfer between the interior of the 
cylinder and the external environment. 

The only other mode of heat transfer to the 
surfaces is conduction between the cylindrical 
wall surface and the adjacent gas zones. The 
conduction heat transfer a t  the cylindrical wall is 

(9) 

The temperature gradient in the gas a t  the wall 
p=po is obtained numerically from the slope at 
the wall of a parabola fitted through the tempera- 
ture of the subject wall-surface zone and the zone- 
center temperatures ef the hut and second gas 
zones away from the wall. I n  this way, the heat 
conducted a t  each a-all-surface zone may be 
computed, and the result combined with that of 
equation (8) to obtain the net total heat transfer 
to the wall-surface zones. 

PRACTICAL CONSIDERATIONS 

In closing this section, several important practi- 
cal aspects of the analysis herein should be empha- 
sized. First, although allowance was made for 
continuous variation of gas temperature within 
he gas zones, the problem could still be stated 

solely in terms of the gas-zone-center temperatures. 
As a direct result of this circumstance, it becomes 
possible to perform the integration of the exchange 
integrals between zones in a manner independent 
of zone temperatures, or stated in another way, 
these exchange integrals are a function only of the 
shape of the cylinder, given by LID, and of the 
opacity of the gas as given by r,=kD. This 
consideration is extremely important, since the 
computation of these exchange integrals is much 
more time consuming than the solution of the 
remainder of the problem. Therefore, it makes 
sense to compute these exchange integrals sepa- 
rately for given values of LID and kD. and to 
record the results in tabular form on punched 
cards or computer tape. In  this manner, it is 
possible to solve the problem for a given cj-linder 
and gas absorptivitj- ,for various boundaq- tem- 
peratures, sources in the gas, and flow rates with- 
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out the necessity of having to repeat the laborious 
cornputation of the exchange integrals each time. 

RESULTS AND DISCUSSION 

Equation ( 2 )  was solved on an IBJI 7090 
coniputer by using the methods described in the 
last section for the general citse of a gray gas 
of uniform absorptivity enclosed in a black- 
walled cylindrical pipe with a length to diameter 
ratio of 5. Results were obtained for a range of 
optical diameter of the pipe, ro=ICD, between 
0.2 and 10.0 and for R wide range of gas-flow 
rates and internal heat sources in the gas. For 
this particular geometry, i t  is difficult to present 
quantitative general results that give the effect 
of the interaction between conduction and radia- 
tion, as was done in reference 1. To obtain such 
results for a cylindrical geometry, i t  would be 
necessary to determine the combined radiative 
and conductive exchange in the annulus between 
two concentric cylindrical siirfwes, t i  task that 
is beyond tlie scope of this report. Consequently 
most of tlie results presented are for riidiant heat- 
ing of a gas flowing through i~ cjlirdrical pipe. 
Results are presented, however, that give the 
effect of thermal conduction on heat transfer 
from isothermal pipe walls to a flowing absorbing 
gas, arid the effect of combined radiative and 
conductive transfer from a heat-generuting cy- 
lindrical core of gas in the center of tlie pipe 
through an absorbing gas to the pipe will is 
also briefly investigated. 
RADIANT HEAT TRANSFER FROM PIPE WALLS TO FLOWING 

GAS 

In the subsequent discussion, the gtis enters 
the pipe at one of the ends at  a uniform tempera- 
ture T, and the teinperature of the corresponding 
end surf ace, which represents the external environ- 
ment a t  tlie pipe inlet, is made unifornily equal 
to this incoming gas temperature. The tempera- 
ture of the cylindrical wall of the pipe T* is 
uniform dong the length of the pipe and is greater 
than T,. The end-surface temperature at  the 
outlet of tlie pipe is assumed uniform over that 
end surface and is made equal to the mean mixed 
gas exit temperature To. This is somewhat of 
an approxiniation, since although the gas enters 
the pipe at a uniform temperature, the gas tem- 
perature at  the outlet will not generally be uniform 
in the radial direction. It is assumed, however, 
that temperature equilibrium in the gas is attained 

shortly after the gas leltves the pipe, and since 
the end surface a t  the outlet represents the en- 
vironment external to the outlet of the pipe, the 
assumption is considered reasonable. 

In order to obtain the results in the most general 
form, it is necessary to present them in terms of 
dimensionless parameters. When equation (I) is 
divided by akT$ and the internal heat-generation 
term is neglected, the equation is reduced to 
dimensionless terms as follows: 

The integrals on the right, as stated in the analysis, 
miy be represented as functions of 7, and LID. 
Therefore, the solution to tlie preceding dimension- 
less equation is determined uniquely bj- the pa- 
raiiieters Gc,/r,uT$, (h/D)/r,uT$, r,, L / D ,  and the 
boundary condition at  the pipe inlet: 

T b l D ,  P l O  I __ - T ,  
T* I x / D ) = o  T* 

If the dual dependence of r, in the parameter 
group is eliminated, the dimensionless results for 
heut transfer to a flowing gas may be presented 
uniquely in terms of the parariieters Gc,/uT$, 
(X/D) /uT$,  T,, and LID. The dimensionless 
parameter Gc,/aT$ is known as the Boltzmann 
number NBO and is used in both references 1 and 2 
in the discussion of radiant heat transfer to flowing 
gases. The dimensionless parameter ( ~ / D ) / u T $  
is the radiation-conduction parameter N C R  and is 
used to represent the effects of thermal conduction 
on heat transfer in a radiation-absorbing gas. 

Results for radiant transfer to a flowing gas in 
the pipe, with conduction transfer neglected 
(NCR=O), are given in figure 4, for tlie case of slug 
flow of the gas, the flow rate G being uniform over 
the pipe cross section. As will be seen later, it 
may be a reasonable assuniption to neglect conduc- 
tion transfer when the teniperature level in the 
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F;cc-nc 1.--H~st trinsfer tn nhwrhing gas flon-ing through 
pipe from isothermal pipe walls for slug flow without 
conduction. Ratio of gas inlet t o  wall temperature, 0.4; 
length to  diameter ratio, 5;  conduction-radiation pa- 
rameter, 0. 

gas becomes veq- high. The parameter A= 
(To- T J / (  T,- T,) represents the effectiveness of 
the radiant heat transfer to the gas. It is the 
ratio of the actual heat transfer to the gas to the 
iiiasiniuni heat transfer theoretically possible. 
The ralue of To in the expression for -1 is the 
mised-mean gas temperature a t  the outlet of 
the pipe. 

The results given in figure 4 are rery similar 
to those obtained in reference 1 for radiant heat 
transfer to a gas flowing betireen two parallel 
flat plates. As the absorptivity of the gas, and 
thus T,, increases from zero, the amount of energy 
radiated from the wall of the pipe that is absorbed 
by the gas increases from zero to some maximum 
value. Thereafter, for further increases in gas 
absorptivitj-, the amount of heat transferred to 
the gas steadiy decreases. The reason for this 
eventual decrease in heat transfer with increasing 
gas absorptivity is caused by the self-shielding of 
the gas as i t  becomes more absorptive. -4t high 
values of gas absorptivity, most of the direct 
radiation from the wall of the pipe is absorbed in 
the gas adjacent to the wall, and since it is re- 
emitted isotropically in the gas, about one-half 
is remitted toward the wall and reabrorbed there. 
Therefore, very little direct wall radiation reaches 

the gas in the center of the pipe rind consequently 
the gas there remains relatively cool. As  the 
gas Iibsorptivity increases, the la-er of gas adjacent 
to the wall required to attenuate the direct wall 
radiation becomes thinner ; consequently, a greater 
proportion of the gas in the pipe is shielded from 
the direct wall radiation, which results in lower 
overall heat transfer. 

The effects of conduction and velocitj- profile on 
the heat transfer to a flowing gas are shown in 
figures 5(a) and (b) for Nm=33. The results in 
figure 5(a) are for a slug velocity profile, as in the 
case of those presented earlier in figure 4, whereas 
the results for a parabolic velocity distribution 
are shown in figure 5(b). For the case of the 
parabolic relocit- distribution, the Boltzmann 
number is based on the arerage flow rate in the 
pipe. Obviously, the effect of added conduction 
is alwa\-s to increase the overall heat transfer to 
the gas. I t  is interesting to note, however, what 
the relative effects of conduction on the overall 
heat transfer are. In  figures 3(a) and (b), the 
values of 11 a t  T ~ = O  represent the thermal ef- 
fectiveness of heat eschange due to conduction 
alone and, thus, represent a “floor” under the 
curves as T,, increases and radiant transfer becomes 
effective. It2 is seen that for values of hT,,= 
(h jD) /~T~<0 .05 ,  radiation seems to be the domi- 
nant mode of transfer escept, of course, a t  very 
low values of T~ where conduction is always 
doniinant ; however, for d u e s  of XCR>O.5 ,  the 
transfer appears to be primarilj- by conduction for 
all values of T ~ .  Thus, if the value of ATcR in a 
particular situation is known, the mode of heat 
transfer that will be dominant in the combined 
process can be quickly ascertained. Although the 
thermal conductivit- of most gases increases 
slightly with temperature, A T c R  is also inversely 
proportional t,o the cube of the temperature. 
Therefore, the effect of conduction transfer in a 
radiation-absorbing gas decreases rapidly as the 
temperature level becomes high, since the value of 
ATTCR drops very quickly despite the increase in 
thermal conductivity. The results shown for a 
parabolic velocity profile in figure 5(b) are very 
similar to those shown in figure 5(a), escept that  
for any given value of NCR, the values of A are less 
than the corresponding values for a slug velocity 
profile. This decrease in ,I is to be espected, 
since a parabolic-velocitj- profile presents a much 
smaller heat sink adjacent to the \\-all than a 
slug-velocity profile does. 
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(a) Slug velocity profile. 
(b) Parabolic velocity distribution. 

FIGURE 5.-Hcat transfer t o  absorbing gas flon-ing through pipe from isothermal pipe n-alls with combined radiation 
Ratio of gas inlet t o  wall tenipcrature, 0.4; length to diameter ratio, 5.0; Boltzmann number, 33. and conduction. 

RADIANT HEAT TRANSFER FROM UNIFORMLY HEATED CY- 
LINDRICAL GASEOUS CORE TO SURROUNDING FLOWING 
GAS AND PIPE WALL 

The situation discussed here is typical of radiant 
heat transfer from an electric arc, plasnia jet, or 
gaseous-reactor core enclosed in a pipe to the umills 
of the pipe and to the gas flowing in the annulus 
between the core and the pipe. For the results 
presented, the radius of the heat-generating gase- 
ous core is equal to 0.2 of the pipe radius, the heat- 
generation rate per unit volume is uniform both 
axially and radially in the core, and the absorp- 
tion coefficients of the core and the surrounding 
gas are equal. The boundary conditions are 
similar to those used in the preceding section. 
The gas enters the pipe a t  a uniform temperature 
Ti and this temperature is again taken to be 
uniform over the end surface of the inlet of the 
pipe. The wall temperature of the pipe is uniform 
along the length of the pipe and is also taken to be 
equal to Ti, the gas-inlet temperature. The end- 
surface teriiperature a t  the outlet of the pipe is 
assumed to be uniform over that surface and is 
again made equal to the mean mixed gas temper- 

ature a t  that end. The effects of thermal con- 
ductivity are again neglected, and the results 
presented are for the case of slug flow of the gas. 
Although the temperature of the heat-generating 
core in the center of the pipe is much hotter than 
that of the surrounding gas, the assumption of 
uniform temperature on the ends of the pipe is 
not unreasonable, because the cross-sectional area 
of the core is such a small fraction of the total end 
area. The ratio of the mixed mean gas-outlet 
temperature to gas-inlet temperature is used as a 
parameter in presenting the results. In  order to 
keep this temperature ratio fixed for a number of 
different cases, i t  is necessary to vary the amount 
of heat generation in the core accordingly. 

Since, in the case of an electric arc or gaseous 
reactor enclosed in a pipe, the temperature of the 
plasma is usually much hotter than the melting 
point of the material from which the pipe is 
fabricated, it is necessary to cool the enclosing pipe 
externally when a large fraction of the heat 
generated in the plasma is deposited directly on 
the pipe walls. The radiant heat transfer from the 
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plasma to the pipe walls may be attenuated, 
hom-ever, by increasing the flow rate and opacity of 
the gas in the annulus between the plasma core 
and the pipe mall. Consequently, the results for 
this configuration will be presented in the form of 
fractional heat load to the wall as a function of 
temperature-rise ratio of the gas flowing through 
the pipe, Boltzniann number (indicative of gas 
flow rate), and gas 0pacit.y. Figure 6 gives the 
fraction of heat generated that is absorbed by the 
pipe wall as a function of Boltzmann number, with 
gas opacity ro  as a parameter for a fixed value of 
gas-temperature ratio in the pipe. As e-spected, 
an increase in the gas flow rate decreases t.he 
amount of heat transmitted to the wall of the pipe 
for all values of gas absorpti.ritj-. Also, the 
effectiveness of increasing the absorptivity in 
reducing the heat load on the wall increases as the 
Boltzmann number increases. Thus, a t  low 
vahes of Boltzrr?mn niiniber flow values of gas 
flow), the percent of heat absorbed by the wall is 
affected only slightly by changes in gas absorptiv- 
ity; however, a t  higher Boltzmann numbers, the 
percent of absorption a t  the wall decreases rapidly 
as the gas opacity increases. The percent of 
absorption a t  the wall decreases continuously with 
increasing gas flow but seems to approach a limit- 
ing value that is a function only of the opacity of 
the gas in the pipe. This limiting value of percent 
absorption at  the wall decreases with increasing 
gas opacity and is less than 4 percent for values of 
gas opacity ro greater than 10. Figure 7 is 
essentially a cross plot of figure 6 that shows more 
clearly the effect of gas opacity on the heat load to 
the wall. As mentioned earlier, a t  low values of 
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F I C ~ R E  6.-Heat load to  pipe wall as function of Boltz- 
mann numbrr based on wall tcniperature for various 
values of gas opacity. Wall temperature equal to  gas 
inlet temperature; length to  diameter ratio, 5 ;  tempera- 
ture rise ratio, 2. 
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FIGURE 7.-Fractional heat load to  wall from heat- 
generating gaseous core as function of gas opacitp for 
several values of Boltzmaiin number based on gas inlet 
temperature. Wall temperature equal to gas inlet tem- 
peiiztiire; tcr.peroture rilsrr ratin, 2 ;  length to  diameter 
ratio, 5.  

Gas opacity.  T~ 

Boltzmann number, the opacity of the gas has 
practically no effect on the percent heat load to the 
wall. As the flow rate in the pipe is increased 
however, an increase in the gas absorptivity 
causes the heat load to the wall to decrease rapidly. 
Also for very large Boltzmann numbers, a limit is 
reached where the heat load to the wall becomes a 
function only of gas opacity and is nearly inde- 
pendent of further increases in flow rate. 

Figure 8 shows the effect of varying the tem- 
perature-rise ratio of the gas flowing in the pipe. 
As expected, when the temperature-rise ratio of 
the gas in the pipe increases, a large fraction of the 
heat generated is lost to the wall. From the fore- 
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FIGURE S.-Fractional heat load to  wall a t  constant 
Boltzmanii number of 533, based on gas inlet tempera- 
ture, as function of gas opacity for two values of tem- 
perature rise ratio. Length to  diameter ratio, 5.  
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going discussion it appears that in order to shield a 
pipe wall from the radiation of a hot arc or plasma 
enclosed in the pipe, it is necessary not only to 
make the intervening gas stream relatively opaque 
but also to make the gas flow rate sufficiently large 
to maintain a high value of Boltzmann number. 
The specific results obtained here were for a pipe 
with a length to dinnieter ratio of 5,  which had n 
heat-generating gaseous core a t  the center whose 
radius was 0.2 that of tlie pipe. Though the 
quantitative results for this case probably do not 
apply to other pipe configurations, i t  is expected 
that the qualitative trends will be the same. 

RADIANT HEAT TRANSFER FROM A UNIFORMLY HEATED CY- 
LINDRICAL GASEOUS CORE THROUGH AN ABSORBING 
STAGNANT GAS TO THE PIPE WALL 

Tlie situation here is niuch the same as for the 
previous case except that the absorbing gas be- 
tween the gaseous heat-generating core niid the 
walls is stationary. The cylindrical wall of the 
pipe and the two end surfaces are kept at  the same 
uiiiforni temperature. Consequently, since there 
is no flow and the conditions a t  both ends of the 
pipe are the same, if the end effects :we sniall, the 
conditions a t  the middle of the cylinder are es- 
s en t idy  the same as those in a siniilar pipe of 
infinite length. I t  was found that for L/I)=5 the 
end effects were relatively small, and the principal 
variation of temperature in the pipe was in the 
radial direction. The axial variations of tern- 
perature in the pipe were small and due only to 
the presence of the finite ends of the pipe. 

For the case of no conduction or flow in the 
pipe, equation (I) becomes linear in the emissive 
power E=uT4, and tlie results are best presented 
by illustrating tlie dimensionless emissive-power 
profiles in the gas. Because of the linear nature 
of the problem, the emissive-power difference be- 
tween points in the gas and the wall is directly 
proportional to the radial heat flux transmitted 
from the gaseous core to the pipe walls. Thus, 
the results may be made diniensionless by dividing 
this difference of emissive powers by the radial 
heat flux measured a t  a radius ratio of 0.2 a t  the 
edge of the gaseous core. Tlie radial heat flux 
a t  this point is obtained by dividing the total heat 
generation in the core q'"rrD2L/4 by the core sur- 
face area rDL.  Thus, the radial flux a t  this radius 
is q"=q"'D/4. The results could have been made 
dimensionless just as well by dividing AE by tlie 
heat flux at any other radius in the pipe outside 

the gaseous core, for instance, by the flux at the 
wall. Because there are no sources outside the 
gaseous core, the radial heat flux varies inversely 
with the radius, and the heat fluxes a t  any two 
radial stations differ only by it constant factor 
equal to the rtktio of the two radii. Thus, the 
present choice is purely arbitrary. 

The results are shown in figure 9 for various 
values of gas opacity. The discontinuity in the 
emissive-power profiles a t  p/p ,=0 .2  is due to the 
radial step change in internal heat generation a t  
that point in going from the gaseous lieat-generat- 
ing core to the surrounding gas. Since conduction 
is not present, there is no reason for the emissive- 
power profile to be continuous a t  that point or a t  

FIGURE 9.-Dimensionless radial emissive power distribu- 
tion for radiation from gaseous heat-gcnerating cylin- 
drical core through annulus of stationary absorbing gas 
to  black cylindrical pipe wall for various values of gas 
opacity. 
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the wall where pip,= 1. The discontinuity of 
emissive-power profiles a t  gas-surface or source 
boundaries is a 1%-ell-known pheitor~ierto~i associated 
with pure radiation transfer in absorbing gases. 
As seen froin figure 9, with increasing gas opacity, 
the emissive-power curves in the region outside 
the core become higher and steeper, as expected, 
since an increase in the opacity increases the resist- 
ance to heat transfer. At the sanie time, however, 
the emissive power of the heat-generating gas in 
the core at first decreases with increasing absorp- 
tivity to some niininlunl value and then increases 
again slightly with further increases in opacity. 
The reason for this behavior in the core is that the 
einission from a gaseous volume source is roughly 
proportional to the product of its absorption 
coefficient with the e~nissive power of the source 
relative to its surroundings. This relation does 
not hold exactlv for finite volunies of gases because 
of self-shielding in the volume, but it is still 
qualitatively correct. Consequentl-, for the same 
aiiiount of energ>- emitted, as the absorptivity in 
the core increases, as indicated by increased 
opacity of the gas in the pipe, the relative eniissive 
power, as indicated by the jurtip in emissive power 
a t  the core boundary, decreases. The rise in 
dimensionless emissive power in the core in going 
from a gas opacity of ~ , = 6  to r0= 10 is believed to 
be a result of the fact that in that range of r ,  
although the jump in emissive power at the core 
boundary decreases as described previosuly when 
the opacity r0 increases from 6 to 10, the increase 
in eniissi\-e power in the gas outside the core is 
even more rapid, which results in a net increase 
of the emissive-power level in the core. 

Also plotted in figure 9 for r,=IO, is the ap- 
prosimat e emissive-power profile of an absorbing 
gas in an aiinulus between two concentric cylin- 
drical surfaces. These results were obtained from 
an analysis derived in reference 7 based on the 
Rosseland diffusion approximation with a jump 
boundary condition. Although the analysis of 
reference 7 postulates an inner cylindrical surface 
rather than a gaseous core as the radiation source, 
the results apply equally well to the present case 
between the core and the wall, since the gaseous 
core may be replaced by a diffusely emitting 
cylindrical surface that has the same shape and 
size as the core, and whose emissive power is such 
that the net radiant flux given off by this surface 
is equal to that emitted from the gaseous core. 

The agreement of the results based on the analysis 
in reference 7 with those obtained in this report 
is fairly good, especiallv considering the fact that 
the Rosseland approxinlatiori with a jump bound- 
ary condition is valid only for high \dues  of 
gas opacity. The gas opacity of T,= 10 for which 
the results are compared is about the lower liniit 
for the validity of that analysis. 

The effect of conduction on the radial tempera- 
ture profile in the gas for the previous configura- 
tion is shown in figure 10. Because equation (1) 
becomes nonlinear in the presence of conduction, 
it is no longer possible to present the dimension- 
less results that show the effect of conduction in 
the sarite parametric form that was used to por- 
traj- the pure radiation results in figure 9. The 
conduction-radiation parameter NCR= (X,ID)/aE, 
\vhicli was derived earlier, is ripain used to present 

1.9 
i , ~ Conduction- 

radiation 
parameter, ~ 

l 
o 0 (rodiotion 

0 .I 
I 0 .5 

' ' A 1.0 

only) 
I .7 

Radius ratio.  p l p ,  

FIGURE 10.-Dimr~nrionlcss temperature profik- for emi s- 
qion from gaseous heat-generating cglindrical eo re 
through annulu\ of stationary ah-orbing, conducting 
gas to  black cylmdrical pipe m-all shoning rffvct of con- 
duction in gas. Gas opacity, -1 0; tlimeiisionlcss radial 
hr,at flus, 5.0. 
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the results in the presence of conduction. The 
surface temperature of the cylindrical wall is 
taken as the reference temperature T*. The 
radial heat flux q f f  a t  p/p ,=O.2  is made dimension- 
less by dividing by UT:. Consequently, for this 
case, the results for combined conductio11 and 
radiation depend uniquely on the dimensionless 
parameters N C R ,  q”/aT:, and 7,. The effect of 
LID is omitted here, because, as before, only 
one-dimensional radial temperature profiles a t  
the middle of the pipe are considered, and for LID 
sufficiently large, its effect is merely a perturba- 
tion on the results. Thus, the results in figure 10 
give the dimensionless temperature profiles of the 
gas in the pipe for several values of NCR and for 
fixed values of r ,  and q”/aT$. The results are not 
unusual. With conduction, the temperature pro- 
files become continuous a t  the core boundary and 
a t  the wall, and the overall temperature level in 
the pipe, especially in the core, is reduced since 
the added conduction increases the overall heat 
transfer. 

CONCLUDING REMARKS 

The method of this report for solving the 
problem of radiant heat transfer to an absorbing 
gas in a circular pipe under the influence of flow 
and conduction closely parallels that given in 
reference 1 for solving essentially the same 
problem in a channel formed by a pair of semi- 
infinite flat plates. Results were presented for 
a gray gas of uniform absorptivity enclosed in a 
black circular pipe with a length to diameter 
ratio of 5 .  

For the case of radiant heat transfer from 
isothermal walls of the pipe to a cooler, flowing, 
absorbing gas, the heat transfer to the gas goes 
through a maximum as the opacity of the gas is 
increased. The maximum heat transfer occurred 
in the range of gas opacity from 3 to 4. This 
effect is due to the self-shielding of the gas to the 
radiation being emitted from the pipe walls and 
was also observed in reference 1 in heating an 
absorbing gas flowing between two isothermal 
flat plates. 

The effect of therinal conduction on heat 
transfer to  a flowing radiation-absorbing gas 
becomes hiportant whenever the conduction- 
radiation parameter NCR exceeds 0.05 or whenever 
the gas opacity is less than 1. As the temperature 

level of the gas rises, although the thermal con- 
ductivity of the gas will generally increase sonie- 
what, conduction rapidly becomes relatively less 
important than radiation. This decrease in 
importance is due to the inverse variation of N C R ,  

which results in the rapid decrease in the value 
of this parameter as the temperature rises despite 
the attendant increase in thermal conductivity of 
the gas. 

When a heat-generating gaseous core is con- 
tained in the pipe, as in the case of a plasma jet 
or in the coaxial-jet gaseous nuclear-rocket con- 
cept, a practical problem of current interest is to 
prevent melting or burnout of the pipe wall by 
shielding it from the radiation emitted by the 
high-temperature plasma core. It was shown 
herein that, if the opacity of the gas in the pipe is 
greater than 10, the heat load to the wall of the 
pipe can be made negligibly small if, in addition, 
the gas flow rate is such that the Boltzmann 
number in the pipe, bused on the wall temperature, 
becomes 1000 or gx-eater. On the basis of these 
results, it is felt that a device in which a high- 
temperature plasma must be contained, such as a 
gaseous nuclear rocket, is feasible from a heat- 
transfer standpoint if a gas opacity of approxi- 
mately 10 is attainable over the temperature 
range of interest. 

Results are also presented for one-dimensional 
radial radiant heat transfer from a heat-generating 
cylindrical gaseous core to the pipe walls. The 
emissive-power profile in the gas between the 
core and the wall was compared with results from 
reference 7 for an absorbing gas in an annulus 
between two concentric black cylindrical surfaces, 
and agreement was found to be good. For the 
case where no conduction was present, a large 
jump in emissive power occurred at the core 
boundary. The magnitude of the jump was 
roughly inversely proportional to the opacity of 
the gas. In  the presence of conduction, the 
jump disappears, and the radial-temperature profile 
becomes continuous. As the conductivity of the 
gas is increased from zero, the temperature levels 
in the gas, especially in the core, rapidly decrease 
as expected. 

LEWIS RESEARCH CENTER 
NATIONAL AERONAUTICS A N D  SPACE ADMINISTRATION 

CLEVELAND, OHIO, September 25, 1962 



Appendix A 
SYMBOLS 

surface area 
specific heat of gas 
diamet.er of pipe 
infinitesimal volume located a t  center of 

arbitran- infinitesimal gas volume 
emissive power, uT4 
gas-ring-source to gas radiation exchange 

factor per unit cross-sectional area of 
ring F(s)  =2rpf (s )  

fsctor per unit rolrrme of ring 

area 

change factor 

eschange factor 

gas-zone cross section 

-+ + 

gas-ring-source to gas radiation eschange 

flow density of gas, weight flow per unit 

surface-ring-source to gas radiation es- 

surface-ring-source to surface radiation 

integral function (see eq. (BIO)) 
radiation absorption coefficient of gas, 

Boltzniann number, GC,/CT 
conduction-radiation parameter, (h/D) / 

heat transferred to surfaces 
radial heat flus per unit area 
heat generation per unit volume of dis- 

tributed sources in gas 
position vector of zone center in interior 

of pipe or on its surface 
position vector of arbitrary point in in- 

terior of pipe or on its surface 
position vector of gas volume d V  in in- 

terior of pipe 
relative position vector between two 

points in pipe 
temperature 
axial coordinate 
arbitrary function (see eq. (B8g)) 

reciprocal length 

aT3, 

9 

T O  

A 

x 
5 

t o  

e 

P 
P O  

U 

i- 

i -o  

coordinate in radial direction in cross 

radial width of cross section of gas zone 
angular coordinate 
heat-eschange effectiveness, (To- T J /  

thermal conductivity of gas 
coordinate in asial direction in cross 

length of gas zone cross section 
radius of point in interior of pipe 
radius of pipe 
St efan-Boltzmann constant 
optical distance between two points in 

optical diameter of pipe or opacity of 

section of gas zone 

(T* - TJ 

section of gas zone 

pipe, i-=klZl 

gas, i-,=kD 

Subscripts: 

C 
e 
z 

i lL 

j 

I? 

m 

n 

0 

R 
S 

W 

* 

conduction 
end surface of pipe 
position along length of pipe of &xed 

gas or wallsurface zone (usuall5- that  
on which heat balance is taken), 
i=l, 10 

conditions a t  inlet of pipe 
radial position of kxed gas or end-surface 

zone in pipe measured from center of 
pipe outward (usuallj- for that zone 
on which heat balance is taken), j =  1 , 5  

end number, 1=1,2 
general position along length of pipe of 

gas or wall-surface zone, m= 1, 10 
general radial position from center of 

pipe to wall of gas or end-surface 
zone, n=1, 5 

integrated mean conditions a t  outlet of 

radiation 
surf ace 
inner surface of pipe wall 
reference temperature 

Pipe 



APPENDIX B 
DERIVATION OF EXCHANGE FACTORS FOR CYLINDRICAL GEOMETRY 

GAS TO GAS EXCHANGE FACTORS 

Since the conditions in the cylinder are axisyni- 
metric, the conditions in a ring of gas at  a given 
radius from the center of the cylinder will be uni- 
form. Thus, i t  is sufficient to consider the 
exchange between such a ring of gas of infinitesimal 
cross section and an infinitesimal volume a t  some 
other point in the c,ylinder. This situation is 
shown in sketch (a). The radius of the ring of 

Sketch (a). 
u 

gas is R and the infinitesiintil volume a t  P, to 
which this ring radiates, is at  axial distance 2 
from the plane of the ring and a t  some radius r 
from the centerline. The distance from P to soiiie 
point on the ring is given by z .  Let the emissive 
power of the ring be unity and let dV be the in- 
finitesimal volume a t  P. Consider the radiation 
from an infinitesimal arc of the ring that is trnns- 
mitted to and absorbed a t  P. Since the volume 
of this infinitesimal arc is R dR d8 dz, the radiation 
from this arc that is absorbed a t  P is 

Let P' be the projection of P on the plane of the 
ring and let e be the angle between the radius 
vector through P' and the radius vector to the 
radiating arc on the ring. The distance z can 
then be found from the relation 

z2=zz+(r-I i  cos e)2+Iiz sin2 e (B2) 
If equation (Bl) is integrated from O=O to 2 ~ ,  the 
contribution of the entire ring to the absorption 
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a t  P is obtained. Xote froin equation (B2) that 
the integrand given by equntion (Bl) is sym- 
metrical about e= T ;  thus 

where the relation between z and 8 is given by 
equation (B2). As the situation stands, z ,  and 
thus the integral in equation (B3), is a function 
of the three parameters 2,  r,  and I?. Sicce tlie 
integral in eqiiaition (B3) must be evaluated 
nunierictilly and then tabu1;itcd for use in the zone 
exchange-integral coiiipiittilioiis, it is iinporttLnt 
to reduce its fiirictional dependence to as few dis- 
tinct variables as possible. 7'he expansion of 
equation (B2) results in 

a?=z2+Ii?+rZ-211r cos e (B4) 

thus, 

nnd 

Substitution of these relations into equation (B4) 
results in 

(B8a) _,-z:+z: * 2 - - 2  
4 -- +Y COS e 2 

Thus, as given by equation (BSa), z is now a 
function of only two parsmeters, z, and 2,. If, 
in addition, the substitution T=kz is made, equa- 
tion (B3) may be now also expressed in terms of 
the two parameters 7 ,  and T ~ .  The expression for 
de in equation (B3) is found in terms of d~ as 
follows: Write equation (BSa) in terms of T and 
differentiate to obtain 



~ -~ 

RADIAST HEAT TRAEU'SFER TO ABSORBING GASES ES'CLOSED IK A CIRCULAR PIPE 19 

Sol-ie equation (B8a) for cos e to obtain 

2 T 2 -  (T',  + T q )  
COS e= 

7: - 7: 

Then subs t i t,u t e 

into equation (B8c) to obtain 

-2 sin e=----- 4(+-73(~:-~~) (B8e) 
7: - 7: 

Subst!itute this result in equation (B8b) to obtain 

Define 

then 

and 

By examining equation (B4) and converting to a 
function of 7 ,  it becomes obvious that T ,  and rr 
are precisely the minimum and maximum optical 
distances, respectively, from the ring to point 

P. If f ( s -P)  is defined as the exchange factor 
between the gas ring through s of infinitesimal 
volume 2 r R  dR dx and the infinitesimal volume 

d17 at P, then the radiant exchange between those 
two volumes is given by 

+ - b  

+ 

-3 

- + +  
6p=(2~R dR dx)(k dV),f(s-P) 

- + +  
Then, in terms of equation (B9), f (s-P)  becomes 

The parameterization here is changed to ( T ~ ,  :) 
because this is the most convenient form for 

tabular representation of the integral in equation 
(BIO). The function 

is plotted in figure 11. 

O p o c i t v  rat io ,  r,,/ro 

FIGCRE 11.-Variation of integral in cquation ( B l l )  with 
opacity ratio. 

CYLINDRICAL-SURFACE TO GAS EXCHANGE FACTORS 

The problem nom is to deterniine the radiative 
exchange between a ring (of infinitesimal 1%-idth 
dx) on the interior cylindrical surface of the pipe 
and an infinitesimal volume d V  at some point P 
in the gas. This situation is demonstrated in 
sketch (b). 
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' R  dB d x  
Sketch (b). 

The radius of the surface ring on the e wall is 
R, and the point P is a t  an axial distance x from 
the plane of the ring and a t  radius r from the 
centerline. The radiation emitted at unit emis- 
sive power from an infinitesimal arc of the ring 
that is transmitted to and absorbed a t  P is given 
bv e -kz 

dqp=R* 7i- cos cp 22 k dT7 (B12) 

wherc cp is the angle between the ray from the 
surface element I?, cle clc to P and the normal to 
that surface element. The relation between z 
and 8 is the same as before and is given by equu- 
tion (B4). The law of cosines is used to find cos 
cp from the triangle R,zs formed by the infinitesimal 
surface element, the center of the surface ring, 
and point P. From the law of cosines 

R",Z~-~R,Z COS p=s2 (B13) 
and from sketch (b), s*=T*+T'; also 2 may be 
found in terms of T ,  R,, and s from equation (B4). 

Combine these relations and solve for cos cp to 
obtain 

R,-r cos e cos cp= z 

1 

Now, substitute equation (B14) in (Bl2) to 
eliminate cos cp; then equation (B12) inay be 
integrated from 0 to 2~ to obtain the contribution 
from the entire surface ring to the absorption a t  
point P. When the result is reduced to terms of 
r ,  and rr, as before, the following equation is 
obtained: 

( 1 - k  cos 8) 5 p (k) d (k) (B15) 

given by equation (B8c). This situation is a 
little more complicated, since the resulting integral 
is now a function of three parameters, r,, rr, and 
the radius ratio r/Ro.  Thus, the exchange factor 

g,(s-P) between the ring surface 2rR, dx and 
the volume dV is best given as the sum of two 
integrals, each of which is a function of only the 
two parameters 7 ,  and T ~ .  Again, the parameter- . 

+ +  

ization is changed to (r, ,  2) for the same 

reasons given earlier. Thus, the result is 

are plotted in figures 12 and 13, respectively. 
END-SURFACE TO GAS EXCHANGE FACTORS 

Here, it is desired to derive the relation for 
the radiative exchange between an annular ring 
surface element of radius R and width dR on 
one of the ends and an infinitesimal volunie at 
some point P in the gas. Sketch (c) demon- 

R d 8  dR? 

where cos 8 is R function of rJro and TIT, and is 



RADIANT HEAT TRAXSFER TO ABSORBTNG 

strates this situation, and the nomenclature is 
the same as that used for the previous sketches. 
The radiation emitted a t  unit emissire power 
from an infinitesimal arc of the annular ring 
that is transmitted to and absorbed a t  P is given 
bv 

.J 

de dR cos $ $ k dV (B19) 
2 

where 3. is the angle between the normal to the 
surface element and the ray from the element to 
point P. In  this case, cos 1/. is very simply 
given by 

2 
z 

cos *=- 
Substitute this relation for cos IJ in equation (B19) 
and integrate from 0 to 2~ to obtain the contribu- 

Opoclty rat io ,  T ~ / T ~  

FIGURE 12.-Variation of integral in equation (B17) 
with opacity ratio. 
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tion from the entire annular ring to the absorption 
a t  P in terms of T,, and rr: 

FIGURE 13.-Variation of integral in equation (B18) with 
opacity ratio. 
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Thus, the exchange factor between the annular 
ring surface on the end of area 21rR dIi and the 
volume dl7 a t  point P is given by 

The integral 

was described earlier. 
SURFACE TO SURFACE EXCHANGE FACTORS 

There are three distinct surf:ice to surfacc exchange 
factors: h,,, the cyliridrical-ring-surfAce to cylin- 
drical-ring-surf ace exchange factor; h,, = he,, the 
cvliiiclricwl-riiig-surface to erid-annular-ring-sur- 
face cschangc factor, and he,, the end-annulnr-ring- 
surface to end-iirinulRr-rin~-surfnce exchange 
factor. Most of the basic relations that are 
needed in the derivations of these surface to 
surface exchiige factors have already been (lis- 
cussed and will not be repented. The graphics 
of the present situations are similar to those given 
in sketches (b) and (c). 

Thus, for the case of h,,, consider an infinitesi- 
nial area dA a t  a point Q on  the cylindrical surface 
of the pipe wall that receives raditttioii from a 
ring surface of infiiiitesiiiial width dx on the pipe 
wall, arid let x be the axial distance from Q to 
thc plane of this ring. The point Q lies, of course, 
on the same radius as the ring. Thus, the radia- 
tion exchange a t  unit emissive power from nn 
infinitesimal arc of the ring to dA a t  Q is given by 

e -kt 
dq,= ___ “ dz dA cos2 cp ~ (B22) 

?I- 22 

Using the relation for cos cp from equation (B14), 
noting that here r=R,, and integrating over the 
whole ring yield the following result in ternis of 
ro and rrr: 

Equation (B23) can then be integrated over the 
ring of which dA is a surface element to obtain 

the total exchange between the two surface rings. 
Thus, the exchnnge factor between two surface 
rings on the cylindricid wall, each of infinitesimal 
area 21rR, dx and separated by a distitnce x is 

The function 

is plotted in figure 15. It is interesting to note 
that in this case T , = k x  itnd T,/T,,=~’~+~I~’$’X~. 
Equation (B8c) is used to cxpress cos e in equation 
(Bas) as r~ function of rjr,  mid rrjr0. 

The exchange factor h,, is derived in an almost 
identical iii;inner. Let the emitting surface ring 
be on the cylintlricul wall :LS before, tirid let dA 
be a t  point Q on an end surface a t  radius T .  

Then the transriiisviori a t  unit emissive power 
from an infinitesimal arc of the wall surface to 
Q is gix en bj- 

e-?a 
dA COS cp COS $ ~ (B26) 

R, de dx 
dq,= 22 

Using the relations for cos cp and cos $ derived 
earlier and integrating over the ring as before 
yield 

Again, this expression may be integrated over dA , 

to obtain the exchange between a ring on the cyl- 
indrical wall of area 27rR, dx and an annular ring 
on the end surface of area 21rr dr. Because of the 
dependence of the result on radius ratio r/R,, it 
again makes sense to split the expression for ex- 
change factor into two integrals, each of which is - 

dependent on only . Thus, the exchange 
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Opacity ratio, rr/ro 

FIGURE 14.-Variatioii of integral in equation (B29) with 
opacity ratio. 

factor between tlie two infinitesimal areas given 
previouslj- beconies 

The functions 

are plotted in figures 14 and 16, respectively. 
Finally, in deriving h,, , the exchange factor 

between annular rings a t  opposite ends of the 
pipe, the same procedure is again used. The ra- 
diation transferred per unit emissive pom-er from 
tin infinitesinial arc of an mnular ring on one elid 
of area 2 ~ r  dr to an area d d  at  point Q at radius 
1" on the other end is 

Integration over the annular ring yields 

where x is the axial distance between the two 
surfaces, and is, in this case, merely the length 
of the cj-hider. Then in the same manner as 
for the previous cases, the eschanpe factor between 
tlie two annular surface rings on each end of area 
2Tr dr  and %rr' dr', respectivel>*, becomes 

The integral 

has been previously discussed as I4 T,,  - . ( ::I 
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FIGURE 15.--Variation of integral in equation (B25) with 
opacity ratio. 
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APPENDIX c 
COMPUTATION OF GAS-ZONE TO GAS EXCHANGE INTEGRALS 

Consider the problem of computing the radia- 
tion transfer from one of the toroidal gas zones to 
an infinitesimal volume located a t  the center of 
the cross section of one of the other zones. A 
cross section of the cylindrical channel in w-hich 
this situation is illustrated is shown in k u r e  17. 
The gas zones are toroidal rings of rectangular 
cross section, as shown, whose axis is the centerline 
of the cylinder. The interior of the cross section 
of the (m, n)" zone is described by the rectangular 
coordinate system ( E ,  9) whose origin is a t  the 
center of the cross section, as shown in figure 17. 
The position vector of anj- point in the cross section 
of the (m, n)" gas zone is designated by rm, , ( E ,  9). 
The position vector of the infinitesimal volume at 
the center of the cross section of the (i,j)"zone 
that is being irradiated by the (m,n)* zone is 

Ri. j .  The region enclosing the ( r n , ~ ~ ) ~  zone and 
the point R, , j  consists of a uniformly absorbing 

-+ 

-+ 

-+ 

C r o s s  sec t ion  of 
( rn ,n ) th  gas zone 

T m , n -  
' m -  I "7- 

d A = d €  d r ~ '  

Gas ring of cro 
section d A  _ _ _  

- E D - -  

FIGURE 17.-Gas zone cross sections illustrating method 
of integrating exchange integral from (m, n)th gas-ring 
zone to dV at Rc 1. 

-+ 

gray medium. The (m,n)* zone may be thought 
of as being built up by a series of rings, each of 
which has an infinitesimal cross-sectional area 
dE dq. The emissive-power distribution in the 
zone is a linear function of ( t ,  q) given by equation 
(3). The exchange factor between one of the 
gas-ring sources a t  position rm,n(E, 9) in the (m, n)th 
zone, and the infinitesimal rolume dV a t  I t ,  is 
given by 

-+ 

+ 

where p is the radius of the gas-ring source through 
+ 
r w  n(& 7) 9 

- + +  -+ 
s = r ,  , (E ,  q> + R ,  j 

and 
-3 

r,=kjsl 

Since the nature of the exchange factorsf(s) de- 
rived in appendix B is such that the volume inte- 
grals over the gas zones beccme surface integrals 
over the zone cross sections, the radiation from the 
entire ( r n , ~ ~ ) ~ ' '  zone that is absorbed by d V  a t  

+ 

-) 

I?, is given by 

where crT;,, is the emissive power a t  the center 
of the cross section of the (m, n)th zone and T,,,,,,, 
and T,,,n*l are the temperatures a t  the center 

25 
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of the cross section of zones adjacent to the (m, n) th 

zones in the axial and radial directions, respec- 

tively, toward dlr  a t  position Ri,5. As a result of 
these substitutions, the emissive powers do not 
enter into the integrations, and the integrals 
themselves that appear in equation (C2) are de- 
pendent only on the size of the (m,n)th zone and 
the relative axial and radial positions of d V  at 

€2, with respect to the (m, n)th toroidal gas zone. 
The integration of the integrals that appear in 
equation ((32) is carried out numerically by divid- 
ing the zone cross section into a partition of small 
rectangles (At, All) and then summing the inte- 
grands over this partition. Thus, the triple 
volume integral that appears in equation ( 2 )  be- 
comes a double integral over the surface of the 
zone cross section. 

It is convenient to calculate the results in the 
following manner. Define 

+ 

--f 

and 

where - 

Again, and 7m.n are functions only of the size 
of the zone and the relative position of dV 
a t  Ri, j  with respect to the (m, n)th zone. With 
the use of these definitions, the heat absorbed a t  
clVdue to emission from the (m,n)th zone is given by 

+ 

Equation (C5) is then used to evaluate the gas- 
zone to gas exchange integrals, which appear in 
equation ( Z ) ,  in terms of the gas-zone cross-sec- 
tional center temperatures. 
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